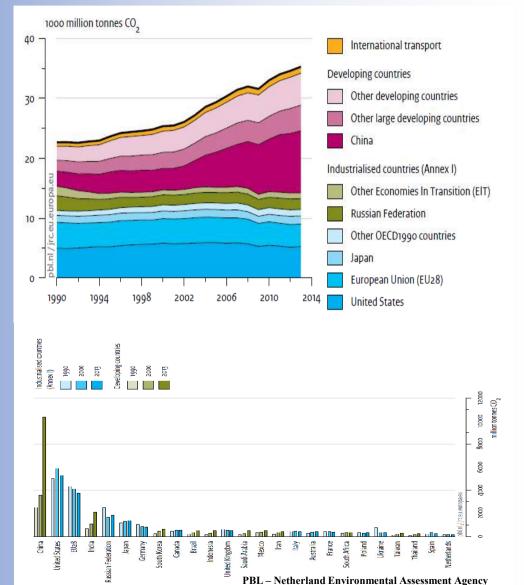


M. Di Tommaso * I. Bordonzotti †

*Istituto Meccanica dei Materiali SA (IMM SA)

† Gamatec SA


Second International Conference on concrete Sustainability, Madrid 13-15 June 2016

FOSSIL FUEL AND CEMENT PRODUCTION ACCOUNT FOR THE MAJORITY OF CO₂ EMISSIONS ON OUR PLANET

TODAY'S GLOBAL AVERAGE EMISSIONS RATE FROM CLINKER MANUFACTURING IS 0.9 kg OF CO₂ PER kg OF CLINKER (APPROXIMATELY 0.74 kg OF CO₂ PER kg OF CEMENT)

THE WORLD'S CONCRETE PRODUCTION IN 2010 WAS ROUGHLY 19 Gton WITH AN ESTIMATED ANNUAL GROWTH RATE OF ABOUT 10%

CONSIDERING THAT 0.130 KG OF CO₂ PER kg OF CONCRETE ARE EMITTED BY THE FINAL PRODUCT THE ANNUAL EMISSION OF CO₂ FOR CONCRETE PRODUCTION IS ESTIMATED AT 2.47 Gton

REDUCTION OF CO₂ EMISSIONS FROM THE CEMENT (AND CONCRETE) INDUSTRY ?

- 1. INTRODUCING INNOVATIVE STRUCTURAL DESIGN, IMPROVING DURABILITY OF STRUCTURES IN ORDER TO EXTEND THEIR SERVICE LIFE
- 2. USING PRECAST ELEMENTS THAT CAN BE ASSEMBLED/DISASSEMBLED EASILY
- **3. SPECIFYING SUPPLEMENTARY CEMENTITIOUS MATERIALS (PULVERIZED FUEL ASH PFA, GROUND**

GRANULATED BLAST-FURNACE SLAG – GGBS, POZZOLANAS, CALCINED CLAYS, ETC.)

- 4. ADAPTING STRUCTURAL/DURABILITY AND QUALITY CONTROL REQUIREMENTS ACCORDINGLY
- **5. USING RECYCLED MATERIALS**
- **6. REDUCING CEMENT DOSAGE**
- 7. UTILIZING THE HEAT CAPACITY OF CONCRETE TO SAVE ENERGY FOR HEATING/COOLING OF BUILDINGS
- 8. MAKING CONCRETE A CARBON SINK BY INCORPORATING CARBON-BASED (VEGETAL / ANIMAL ORIGIN) COMPOUNDS IN ITS MATRIX THAT WOULD OTHERWISE DECOMPOSE IN AEROBIC ENVIRONMENT TO PRODUCE CO₂

WHAT IS BIO-CHAR?

■ORGANIC MATTER THERMALLY CRACKED BETWEEN 400°C AND 600°C IN ABSENCE OF OXYGEN BY MEANS OF A PYROLYSIS PROCESS → BIO-CHAR

FEEDSTOCK MATERIAL: WOOD, COCONUT SHELLS, CROPS, ANIMAL WASTE, ETC.

THE CONTENT OF PURE CARBON (C) IN THE CHAR MAY VARY, GENERALLY IN EXCESS OF 70% OF TOTAL CHAR WITH THE REMAINING % MADE OUT OF ASH CONTAINING SILICON, CALCIUM, IRON AND NEGLIGIBLE AMOUNTS OF ALKALIS (NA + K)

THE GLOBAL YEARLY QUANTITY OF DEAD WOOD ON OUR PLANET IS ESTIMATED ROUGHLY AT 67 Gton OF BIOMASS, WHICH IS ABOUT 11% OF ALL BIOMASS

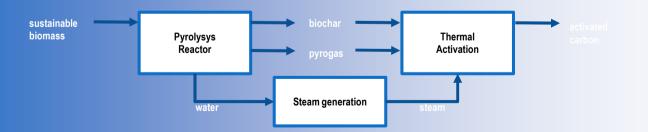
A VAST AMOUNT OF THIS DEAD BIOMASS IS CURRENTLY BURNED IN OPEN AIR, PARTICULARLY IN THIRD WORLD OR DEVELOPING COUNTRIES, LEADING TO LARGE SCALE (REGIONAL) PHENOMENA OF POLLUTING HAZE

IT CAN BE ESTIMATED THAT FROM 1.0 ton OF DEAD WOOD MATTER, APPROXIMATELY 0.3 ton OF BIO-CHAR CAN BE PRODUCED

IF ONLY 1% OF BIO-CHAR (BY MASS OF CONCRETE) WERE INCORPORATED IN CONCRETE, IT CAN BE CALCULATED THAT ROUGHLY 0.5 Gton OF CO₂ WOULD BE SEQUESTRATED YEARLY BY **THE CONCRETE SINK CORRESPONDING TO ABOUT 20% OF THE TOTAL CO**₂ YEARLY EMISSIONS **GENERATED BY THE CEMENT INDUSTRY**

ASSESSING THE OPTIMUM DOSAGE OF BIO-CHAR IN CONCRETE SO AS NOT TO NEGATIVELY AFFECT ITS MECHANICAL

PROPERTIES WHEN CONCRETE IS USED AS A CARBON SINK


THE EFFECTS OF BIO-CHAR INCORPORATION IN PLASTERS FOR THE CONTROL OF HUMIDITY

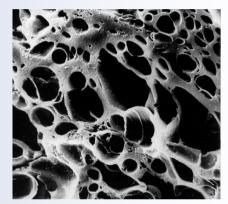
OTHER RECENT STUDIES AIMED TO DETERMINE THE NO_X ADSORBING PROPERTIES OF CONCRETE MANUFACTURED

WITH ACTIVATED CARBON

ACTIVATED CARBON IS THERMALLY-TREATED-IN-PRESENCE-OF-WATER-VAPOR CHAR DERIVING FROM WOOD BIOMASS TO PRODUCE A HIGH SPECIFIC SURFACE (B.E.T > 800 m²/g) AND HIGHLY POROUS STRUCTURE WITH NOTICEABLE

FLUID ADSORBING AND ABSORBING PROPERTIES

Quality experts when quality matters Testing&Consulting www.imm.ch


PILOT PLANT (ATTTEROM Technology®)

PELLETS

MICROSTRUCTURE

THE END PRODUCT (ACTIVATED CARBON) IS WIDELY USED IN AGRICULTURE, IN POLLUTANTS REMOVAL TECHNOLOGIES, IN

FILTERING PROCESSES, AIR PURIFICATION SYSTEMS AND IN THE FOOD AND PHARMACEUTICAL INDUSTRY AMONGST OTHERS

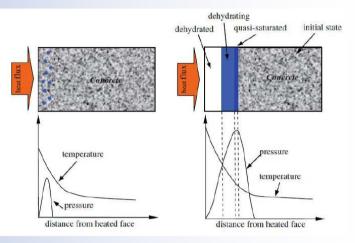
THE OBJECTIVE OF THIS RESEARCH:

DEFINING POSSIBLE BENEFICIAL PROPERTIES OF ACTIVATED CARBON FOR CONCRETE IN TERMS OF ITS
 ADSORBING/ABSORBING PROPERTIES
 KEEPING IN MIND THE LONG TERM (STABLE) STORAGE POTENTIAL OF CONCRETE STRUCTURES FOR THE CARBON
 CONTAINED IN THE CHAR

OF PARTICULAR INTEREST:

DETERMINED BY OTHER RESEARCHERS (Horgnies, M., Serre, F., Dubois-Brugger, I. and Gartner,)

NO₂ HIGHLY REACTIVE AND HAZARDOUS GAS OF THE NO_x GROUP
TENDS TO CONCENTRATE IN ROAD TUNNELS
IN BRIGHT SUNLIGHT AND AT TEMPERATURES ABOVE 21°C PHOTOLYSIS OF NO₂ PRODUCES
OZONE (O₃)
NO, ANOTHER VERY UNSTABLE GAS OF THE NO_x GROUP, CAN IN TURN REACT WITH
OXYGEN (O₂ AND O₃) TO FORM NO₂
DURING RUSH HOUR IN METROPOLITAN TUNNELS, THE CONCENTRATION OF NO₂ CAN BE
SEVERAL ORDERS OF MAGNITUDE GREATER THAN THE CONCENTRATION LIMIT SET BY THE
EPA IN 2010, THAT OF 100 PPB (1PPB = 0.1 PPM)



OF PARTICULAR INTEREST:

WATER VAPOR ADSORPTION BY CHAR PARTICLES COULD DISSIPATE SOME OF THE INTERNAL VAPOR PRESSURE DEVELOPED DURING EXPOSURE OF CONCRETE TO FIRE WHICH CAUSES DISRUPTIVE SPALLING

•WATER IN THE CONCRETE COVER REACHES THE BOILING POINT DURING FIRE •WATER VAPOUR MIGRATES INWARDS •GAS MIGRATION STOPS WHEN WATER WITHIN THE CONCRETE IS STILL IN LIQUID FORM (MOISTURE CLOG) •INTERNAL PRESSURE BUILDS UP WITHIN FIRST cm FROM SURFACE •WHEN PRESSURE EXCEEDS TENSILE STRENGTH OF CONCRETE SPALLING OCCURS •REBARS ARE EXPOSED AND MAY YIELD LEADING TO STRUCUTRAL INSTABILITY

POLYPROPILENE (PP) FIBERS HAVE BEEN LONG USED TO PREVENT SPALLING
 MELT/SUBLIMATION AT ~160°C – 170°C LEAVES CONNECTED CAPILLARITY
 VAPOUR CAN ESCAPE
 PRESSURE IS RELIEVED

THE GENERAL IDEA:

IF CONCRETE CONTAINING ACTIVATED CARBON WERE EXPOSED TO A NO_x POLLUTED ENVIRONMENT OF A ROAD TUNNEL, IT COULD NOT ONLY IMPROVE THE FIRE RESISTANCE OF THE CONCRETE LINING, BUT IT WOULD PROVIDE THE REDUCTION OF HAZARDOUS GASES SUCH AS NO₂ PRODUCED BY VEHICLES

WE COMPARED PROPERTIES OF A C50/60 XF4, XC4, XD3, XA3 (ACCORDING TO EN 206-1 STANDARD) FIRE RESISTING CONCRETE MIX (WITH PP FIBERS) USED FOR THE CONSTRUCTION OF THE VIADUCTS OF THE HIGH SPEED RAILWAY SYSTEM IN SWITZERLAND (ALPTRANSIT PROJECT)

A REFERENCE MIX WAS CAST WITH AND WITHOUT ACTIVATED CARBON

WHEN ACTIVATED CARBON WAS USED, PP FIBERS WERE OMITTED FROM THE MIX

THE FOLLOWING PROPERTIES WERE COMPARED WITH VARYING DOSAGES OF ACTIVATED CARBON:

COMPRESSIVE (CUBE) STRENGTH AND TENSILE STRENGTH

ELASTIC MODULUS

GREEZE-THAW RESISTANCE

CHLORIDE DIFFUSION

CAPILLARY PERMEABILITY

SULPHATES RESISTANCE

ACCELERATED CARBONATION

FIRE RESISTANCE (SPALLING DEPTH AND TEMPERATURE PROFILES)

NO_x ADSORPTION TESTS

THE MIX DESIGN (patent 9646 CH 01)

TEST RESULTS

Component	Dosage	% By mass of
	Reference mix	Comparative mix
CEM II / A-D 52.5R	350 kg/m ³	16.5%
Pulverized Fuel Ash	40 kg/m ³	
HRSP*		1.27%
Activated Carbon (AC)		0.48%/1.06% /1.43%
Superplasticizer	4.9 kg/m³	0.33%
Air Entrainer	0.14 kg/m ³	0.01%
PP fibers	2.0 kg/m ³	
Silceous-Calcareous CA - Ø _{max} 32 mm	270 kg/m ³	3.45%
Silceous-Calcareous CA - Ø max 16 mm	684 kg/m ³	32.9%
Silceous-Calcareous CA - Ø max 8 mm	576 kg/m ³	18.5%
Silceous-Calcareous FA - Ø max 4 mm	268 kg/m ³	13.6%
Entrained air	4%	8% ÷12%
Free water –	165 kg/m ³	5.9% -
W/C	- 0.41	0.33

*HIGHLY REACTIVE SILICEOUS POZZOLANIC COMPOUND

	Concrete requirements C50/60 XF4, XD3, XC4				
	С	omparati mix	ve	Reference mix	
Parameter	0.48% AC	1.06% AC	1.43% AC		Limits
Elastic Modulus (SIA 262/1 - G) [MPa]	41800	41300	41900	40400	
Flexural Strength (SN EN 12390-5) [MPa]	5.0	5.4	5.4	4.9	
Shrinkage (364-day) (SIA262/1-F) [με]	419	452	458	423	
Freeze - Thaw Resistance (SIA262/1-C) [g/m ²]	200	70	80	40	<u><</u> 200
Resistance to Chlorides Penetration (SIA 262/1 - B) [m ² /s]	2.3·10 ⁻¹²	2.2·10 ⁻¹²	1.7·10 ⁻¹²	3.10-12	<u>≤10·10⁻¹²</u>
Absorption by Capillarity (SIA 262/1-A) [g/(m ² ·h)]	6.8	4.5	4.2	5.7	<u><</u> 10
Resistance to sulphates (SIA 262/1-D) [‰]	0.36	0.31	0.46	0.32	<u><</u> 1.2
7-day Compressive Strength (SN EN 12390-3) – [MPa]	52.3	51.3	53.0	50.0	
28-day Compressive Strength (SN EN 12390-3) – [MPa]	71.8	65.8	61.8	65.3	<u>≥</u> 64
Coefficient of carbonation (SIA 262/1-I) - [mm/√year]		1.38			<u>≤</u> 4.5

FIRE TESTS

SEVERAL FACTORS AFFECT THE EXPLOSIVE SPALLING OF CONCRETE:

HEATING RATE AND PROFILE

SECTION SIZE AND SHAPE

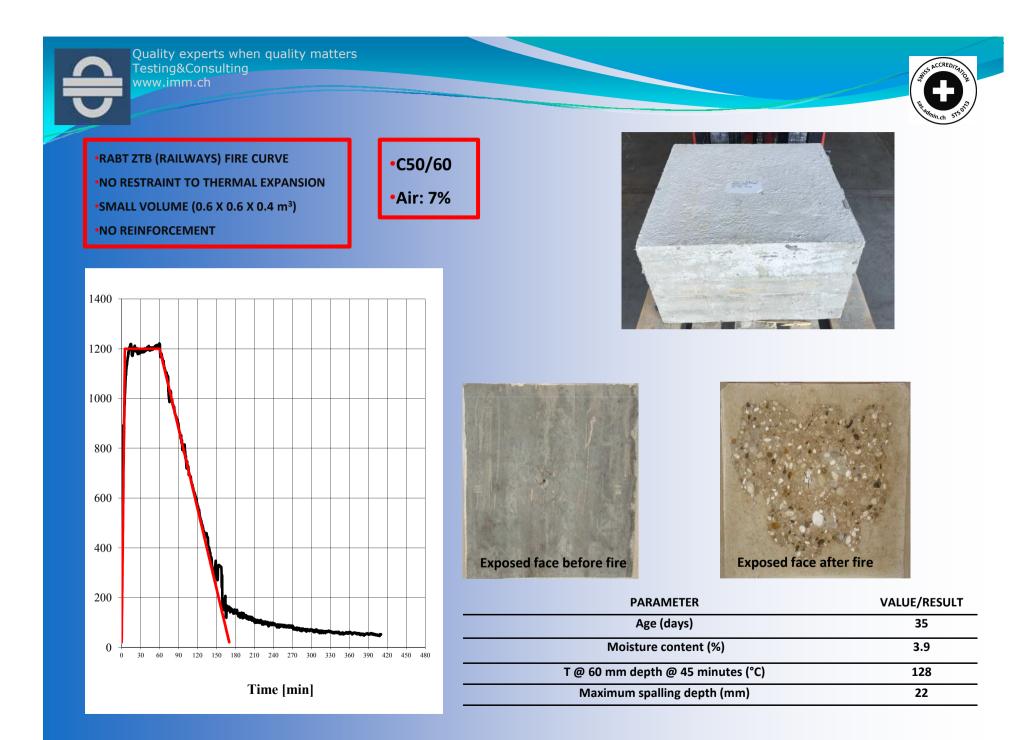
MOISTURE CONTENT

PERMEABILITY

COMPRESSIVE STRESS BEFORE AND DURING HEATING

RESTRAINT TO THERMAL EXPANSION

AGGREGATE TYPE AND SIZE


TWO SEPARATE FIRE TESTS WERE CONDUCTED BY EFECTIC NETHERLANDS UNDER DIFFERENT CONDITIONS

•RABT FIRE CURVE FOR RAILWAYS •NO RESTRAINT TO THERMAL EXPANSION •SMALL VOLUME (0.6 X 0.6 X 0.4 m³) •NO REINFORCEMENT •RABT FIRE CURVE FOR RAILWAYS

•RESTRAINT TO THERMAL EXPANSION

•LARGER VOLUME 1.2 X 1.2 X 0.3 m³)

•REINFORCEMENT (ø 16 mm, S = 150 mm, C = 60 mm)

RABT ZTB (RAILWAYS) CURVE
RESTRAINT TO THERMAL EXPANSION
LARGER VOLUME (1.2 X 1.2 X 0.3 m³)
REINFORCEMENT (Ø 16 mm, S = 150 mm, C = 60 mm)

0

•C30/37 •Air: 11%

<image>

Quality experts when quality matters Testing&Consulting www.imm.ch

•RABT ZTB (RAILWAYS) CURVE

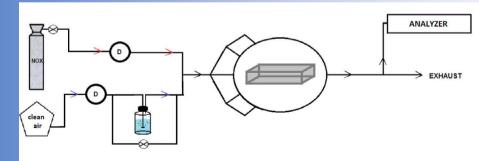
•RESTRAINT TO THERMAL EXPANSION

LARGER VOLUME (1.2 X 1.2 X 0.3 m³)
 REINFORCEMENT (Ø 16 mm, S = 150 mm, C = 60 mm)

Exposed face at the end of the fire test

After 24 hr. from the end of the fire test

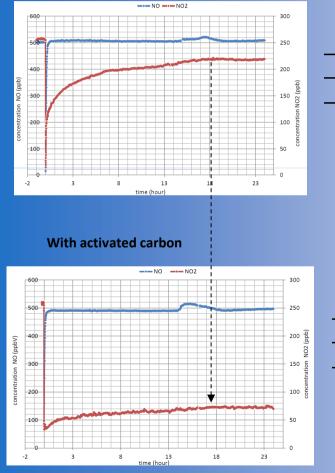
	PARAMETER	VALUE/RESULT
	Age (days)	44
	Moisture content (%)	<3%
T @	0 60 mm depth @ 45 minutes (°C)	200
	Maximum spalling depth (mm)	20


Quality experts when quality matters Testing&Consulting www.imm.ch

NO_x ADSORPTION TEST

PERFORMED BY TERA ENVIRONMENT LABS IN FRANCE FOLLOWING THE PROCEDURE OUTLINED IN:

Horgnies, M., Serre, F., Dubois-Brugger, I. and Gartner, E. NOx de-pollution using activated carbon concrete – From laboratory experiments to tests with prototype garages. Proceedings of the 4th International Conference on Environmental Pollution and Remediation (2014) 65.



NOx ADSORPTION TEST

1

T

Without activated carbon

	Average	Average
	upstream	downstream
	concentration	concentration
NO ₂ (ppb)*	256	219
NO (ppb)	500	509

CCRED

	Average upstream concentration	Average downstream concentration
NO ₂ (ppb)*	258	73
NO (ppb)	510	496

*1ppb NO₂ =1.88 μg/m³

CARBON AS PRODUCED FROM THERMAL CRACKING OF BIOMASS HAS A HIGH SPECIFIC SURFACE AND POROUS STRUCTURE WITH NOTICEABLE FLUID (GAS AND LIQUID) ADSORBING/ABSORBING PROPERTIES

ADDITION OF ACTIVATED CARBON TO HIGH PERFORMANCE CONCRETE IN OPTIMAL DOSAGES HAS NO EFFECT ON ITS PERFORMANCE, BOTH IN THE FRESH AND HARDENED STATE

THE FIRE RESISTANCE OF A PATENTED HIGH PERFORMANCE CONCRETE MIX USING CALCAREOUS/SILICEOUS AGGREGATES, FREE WATER/CEMENT RATIO OF 0.33, 8÷11% ENTRAINED AIR, WITH AN HIGHLY REACTIVE SILICEOUS POZZOLANIC COMPOUND AND 1.06% ACTIVATED CARBON BY MASS OF CONCRETE, HAD VERY LIMITED SPALLING IN A FIRE TEST CONDUCTED WITH THE RABT - ZTV (RAILWAYS) FIRE CURVE

NO STEEL REINFORCEMENT WAS EXPOSED DURING THE FIRE TEST WITH RESULTS COMPARABLE TO THOSE ONES OBTAINED WHEN CONVENTIONAL PP FIBERS ARE ADDED TO THE CONCRETE MIX

THE NO_x ADSORBING PROPERTIES OF CONCRETE CONTAINING 1.06% ACTIVATED CARBON BY MASS OF CONCRETE HAVE BEEN INVESTIGATED, SHOWING THE EFFECT OF SUCH A CONGLOMERATE IN DRAMATICALLY DECREASING THE CONCENTRATION OF NO₂ IN THE TEST CHAMBER

BECAUSE CONCRETE IS THE MOST WIDELY USED MATERIAL ON THE PLANET AND BECAUSE ACTIVATED CARBON IS INERT IN RESPECT OF ATMOSPHERIC OXYGEN, INCORPORATION OF 1% OF THIS MATERIAL IN CONCRETE COULD PERCEIVABLY LOWER THE CARBON FOOTPRINT OF CONCRETE, LEADING TO A MARKET OF TRADABLE CARBON CREDITS ON THE ORDER OF TENS OF BILLION OF DOLLARS IN THE NEXT DECADES

OUR ONGOING RESEARCH IN THIS FIELD IS PRESENTLY TARGETING THE FIRE RESISTANCE (SPALLING DEPTH AND TEMPERATURE AT THE REINFORCEMENT) OF REINFORCED CONCRETE WITH ACTIVATED CARBON UNDER RESTRAINED CONDITIONS AND LONG TERM AND LARGER SCALE NO_X ADSORPTION TESTS TO CALCULATE A STEADY STATE COEFFICIENT OF ADSORPTION OF AIR POLLUTANTS FOR THE DESIGN OF A POLLUTION-ADSORBING CONCRETE LINING FOR ROAD TUNNELS

Thank you !